Microorganismos transforman el jacinto de agua en hidrógeno verde: el género Clostridium, compuesto por bacterias anaerobias que se encuentran comúnmente en diferentes ambientes como el suelo, sedimentos y el tracto gastrointestinal de animales y humanos, ha sido objeto de interés creciente en el campo de la biotecnología, particularmente en la producción de biocombustibles como el hidrógeno verde.

Las especies del género Clostridium pueden producir hidrógeno verde a partir de azúcares simples que, a su vez, pueden ser obtenidos de diversas fuentes como residuos agrícolas y forestales, con alto contenido en lignocelulosa.

Microrganismos y generación de hidrógeno verde

En el ámbito de la biotecnología, estos diminutos seres tienen un papel crucial en la producción de medicamentos, biocombustibles y alimentos fermentados, así como en procesos de biorremediación. Según Paulina Aguirre, docente de la carrera de Ingeniería Ambiental de la Universidad Técnica Particular de Loja (UTPL), “gracias a la capacidad metabólica que tienen los microorganismos es posible explorar una amplia gama de aplicaciones, abarcando desde la generación de energía hasta la reducción de residuos de forma eficaz”.

En 2023, el hidrógeno verde bajo en emisiones representó únicamente el 0,7% del uso global de hidrógeno, calculado en 95 millones de toneladas. “A pesar de que el hidrógeno verde es limpio durante su uso, su producción puede ser contaminante si se basa en fuentes de energía tradicionales como el carbón o el gas”, detalla Aguirre.

En este contexto, la producción de hidrógeno verde a través de microorganismos se revela como un campo prometedor. Esta línea de investigación se centra en desarrollar métodos biológicos para generar hidrógeno verde, posicionándolo como una fuente de energía renovable y sostenible.

Procesos bioquímicos para obtener hidrógeno verde

El hidrógeno verde es un reactivo importante en diversos procesos bioquímicos desarrollados por muchos microorganismos. Algunos lo consumen para impulsar su metabolismo en un proceso similar a la respiración, mientras que otros lo producen durante la fermentación. Además, ciertas bacterias lo usan para convertir el nitrógeno del aire en amoníaco, enriqueciendo el suelo con nutrientes esenciales para las plantas.

Mediante un proceso biotecnológico conocido como fermentación oscura, el equipo liderado por Aguirre está utilizando el jacinto de aguacomo materia prima. “Es una planta que es muy utilizada en procesos de remediación, por su captura de metales pesados, pero que en la actualidad se ha convertido en una plaga. Eso, y su alto componente en celulosa, lo convierte en un buen candidato para generar hidrógeno verde”, detalla la investigadora.

Tras la recolección del jacinto de agua, se somete a un pretratamiento que descompone su estructura vegetal, liberando azúcares como la glucosa. Estos son el alimento para las bacterias del género Clostridium que, en un entorno sin oxígeno, inician la fermentación oscura. Como pequeñas biofactorías, estas bacterias procesan la glucosa y liberan hidrógeno verde como un subproducto de su metabolismo, el cual se acumula en la parte superior de los biorreactores desde donde puede ser recuperado.

En el laboratorio se ha obtenido hasta un 66 % de rendimiento en la producción de hidrógeno verde

En los ensayos realizados en el laboratorio se ha obtenido hasta un 66 % de rendimiento en la producción de hidrógeno verde en relación con la glucosa utilizada como materia prima, lo que le sitúa su costo en alrededor de 2,50 dólares por kilo de hidrógeno verde, con amplio margen para reducir este precio derivado de la mejora del proceso y la disminución de costos operativos.

Además de hidrógeno verde, el proceso también es capaz de producir ácido láctico, ácido butírico y ácido acético que tienen una gran variedad de aplicaciones.

El ácido láctico, más allá de su rol en la industria alimentaria, está impulsando la producción de plásticos biodegradables. El ácido butírico, conocido por su uso en fragancias, también juega un papel importante en la producción de biocombustibles. Por su parte, el ácido acético, fundamental en la fabricación de vinagre, se extiende a usos médicos como antiséptico, así como a la industria para producir diferentes compuestos químicos.

Según comenta Aguirre, el proceso se ha validado en laboratorio y, junto a su equipo, trabaja para mejorar ciertos aspectos clave que eleven su rendimiento. Se aspira que próximamente se inicie el proceso de escalamiento a un entorno relevante que simule condiciones operativas reales. Este paso marcaría un avance importante hacia la implementación industrial de esta tecnología en un futuro próximo.

Un aspecto diferenciador de la estrategia de trabajo utilizada por la investigadora es el uso del jacinto de agua como materia prima. Esta planta puede ser utilizado como biorremediador en cuerpos de agua dulce y, por su parte, el exceso de materia vegetal producido durante este proceso puede ser destinado a la producción de hidrógeno verde. Esto permitiría no solo el tratamiento de residuos líquidos, sino el aprovechamiento total de toda la biomasa generada, lo que va en línea con el concepto de economía circular. En palabras de la investigadora “nuestro enfoque tiene un doble beneficio ambiental tanto para la biorremediación de cuerpos lacustres como para la producción de biohidrógeno, si además consideramos el aprovechamiento industrial de los ácidos, estamos hablando de una biorrefinería donde buscamos la generación de cero residuos.

Uno de los grandes desafíos que presenta el hidrógeno verde para ser utilizado con éxito a gran escala es su almacenamiento. “El hidrógeno verde es uno de los elementos más limpios de la naturaleza, pero también el más explosivo. Eso le proporciona su alta capacidad energética”, afirma la investigadora. Este alto potencial energético hace del hidrógeno verde un candidato ideal para ser el combustible sostenible del futuro, pero su naturaleza altamente reactiva y volátil plantea desafíos únicos en términos de almacenamiento y transporte seguros. Comprimirlo, licuarlo o congelarlo son algunas de las soluciones que ya se han planteado y se espera que esta tecnología avance.

Un almacenamiento seguro y práctico del hidrógeno verde

Estas soluciones no solo buscan hacer el almacenamiento de hidrógeno verde más seguro y práctico, sino también más eficiente desde el punto de vista energético. Superar estos obstáculos es crucial para integrar el hidrógeno verde en nuestra infraestructura energética y aprovechar su potencial como una fuente de energía limpia y renovable.

El hidrógeno verde juega un papel crucial en la transición hacia una economía descarbonizada, principalmente porque es una fuente de energía limpia y versátil. Al quemarse, el hidrógeno verde solo produce vapor de agua como subproducto, lo que lo hace atractivo para reducir las emisiones de gases de efecto invernadero.

S&P Global, agencia de calificación de riesgo en servicios financieros, estima que para 2050 la demanda global de hidrógeno verde alcance los 614 millones de toneladas métricas por año, lo que representaría aproximadamente el 12% del uso total de energía.

Paulina Aguirre nos recuerda que “al igual que en sus inicios los paneles solares era una tecnología bastante costosa, ahora son accesibles incluso para instalaciones domésticas. El avance del hidrógeno verde para ser utilizado como combustible de uso cotidiano también va a requerir su tiempo, pero llegará”.



Source link

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *